Evaluate
-\frac{t^{8}}{8}+\frac{t^{6}}{2}-\frac{3t^{4}}{4}+\frac{t^{2}}{2}+С
Differentiate w.r.t. t
t\left(-t-1\right)\left(t+1\right)^{2}\left(t-1\right)^{3}
Share
Copied to clipboard
\int \left(1-3t^{2}+3\left(t^{2}\right)^{2}-\left(t^{2}\right)^{3}\right)t\mathrm{d}t
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1-t^{2}\right)^{3}.
\int \left(1-3t^{2}+3t^{4}-\left(t^{2}\right)^{3}\right)t\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int \left(1-3t^{2}+3t^{4}-t^{6}\right)t\mathrm{d}t
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\int t-3t^{3}+3t^{5}-t^{7}\mathrm{d}t
Use the distributive property to multiply 1-3t^{2}+3t^{4}-t^{6} by t.
\int t\mathrm{d}t+\int -3t^{3}\mathrm{d}t+\int 3t^{5}\mathrm{d}t+\int -t^{7}\mathrm{d}t
Integrate the sum term by term.
\int t\mathrm{d}t-3\int t^{3}\mathrm{d}t+3\int t^{5}\mathrm{d}t-\int t^{7}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{2}}{2}-3\int t^{3}\mathrm{d}t+3\int t^{5}\mathrm{d}t-\int t^{7}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}.
\frac{t^{2}}{2}-\frac{3t^{4}}{4}+3\int t^{5}\mathrm{d}t-\int t^{7}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply -3 times \frac{t^{4}}{4}.
\frac{t^{2}}{2}-\frac{3t^{4}}{4}+\frac{t^{6}}{2}-\int t^{7}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{5}\mathrm{d}t with \frac{t^{6}}{6}. Multiply 3 times \frac{t^{6}}{6}.
\frac{t^{2}}{2}-\frac{3t^{4}}{4}+\frac{t^{6}}{2}-\frac{t^{8}}{8}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{7}\mathrm{d}t with \frac{t^{8}}{8}. Multiply -1 times \frac{t^{8}}{8}.
-\frac{t^{8}}{8}+\frac{t^{6}}{2}-\frac{3t^{4}}{4}+\frac{t^{2}}{2}
Simplify.
-\frac{t^{8}}{8}+\frac{t^{6}}{2}-\frac{3t^{4}}{4}+\frac{t^{2}}{2}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}