Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\int t^{2}+3t^{3}\mathrm{d}t
Use the distributive property to multiply 1+3t by t^{2}.
\int t^{2}\mathrm{d}t+\int 3t^{3}\mathrm{d}t
Integrate the sum term by term.
\int t^{2}\mathrm{d}t+3\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{3}}{3}+3\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
\frac{t^{3}}{3}+\frac{3t^{4}}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply 3 times \frac{t^{4}}{4}.
\frac{t^{3}}{3}+\frac{3t^{4}}{4}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.