Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 1+6x+12x^{2}+8x^{3}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+2x\right)^{3}.
\int 1\mathrm{d}x+\int 6x\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8x^{3}\mathrm{d}x
Integrate the sum term by term.
\int 1\mathrm{d}x+6\int x\mathrm{d}x+12\int x^{2}\mathrm{d}x+8\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
x+6\int x\mathrm{d}x+12\int x^{2}\mathrm{d}x+8\int x^{3}\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x+3x^{2}+12\int x^{2}\mathrm{d}x+8\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6 times \frac{x^{2}}{2}.
x+3x^{2}+4x^{3}+8\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 12 times \frac{x^{3}}{3}.
x+3x^{2}+4x^{3}+2x^{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 8 times \frac{x^{4}}{4}.
x+3x^{2}+4x^{3}+2x^{4}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.