Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int -3\left(-x^{2}\right)x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
Use the distributive property to multiply -x^{2}-4x-2 by -3x-7 and combine like terms.
\int 3x^{2}x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
Multiply -3 and -1 to get 3.
\int 3x^{3}-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int 3x^{3}+7x^{2}+12x^{2}+34x+14\mathrm{d}x
Multiply -7 and -1 to get 7.
\int 3x^{3}+19x^{2}+34x+14\mathrm{d}x
Combine 7x^{2} and 12x^{2} to get 19x^{2}.
\int 3x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 34x\mathrm{d}x+\int 14\mathrm{d}x
Integrate the sum term by term.
3\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{4}}{4}+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 3 times \frac{x^{4}}{4}.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+34\int x\mathrm{d}x+\int 14\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 19 times \frac{x^{3}}{3}.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+\int 14\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 34 times \frac{x^{2}}{2}.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x
Find the integral of 14 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.