Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int -8\sqrt[3]{x}\mathrm{d}x+\int -7\sqrt{x}\mathrm{d}x
Integrate the sum term by term.
-8\int \sqrt[3]{x}\mathrm{d}x-7\int \sqrt{x}\mathrm{d}x
Factor out the constant in each of the terms.
-6x^{\frac{4}{3}}-7\int \sqrt{x}\mathrm{d}x
Rewrite \sqrt[3]{x} as x^{\frac{1}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{3}}\mathrm{d}x with \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplify. Multiply -8 times \frac{3x^{\frac{4}{3}}}{4}.
-6x^{\frac{4}{3}}-\frac{14x^{\frac{3}{2}}}{3}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply -7 times \frac{2x^{\frac{3}{2}}}{3}.
-6x^{\frac{4}{3}}-\frac{14x^{\frac{3}{2}}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.