Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. u
Tick mark Image

Similar Problems from Web Search

Share

\int u^{\frac{3}{4}}\mathrm{d}u+\int \sqrt[5]{4}\mathrm{d}u
Integrate the sum term by term.
\frac{4u^{\frac{7}{4}}}{7}+\int \sqrt[5]{4}\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{\frac{3}{4}}\mathrm{d}u with \frac{4u^{\frac{7}{4}}}{7}.
\frac{4u^{\frac{7}{4}}}{7}+\sqrt[5]{4}u
Find the integral of \sqrt[5]{4} using the table of common integrals rule \int a\mathrm{d}u=au.
\frac{4u^{\frac{7}{4}}}{7}+\sqrt[5]{4}u+С
If F\left(u\right) is an antiderivative of f\left(u\right), then the set of all antiderivatives of f\left(u\right) is given by F\left(u\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.