Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{\frac{2}{3}}\mathrm{d}x+\int 2\sqrt[5]{x}\mathrm{d}x
Integrate the sum term by term.
\int x^{\frac{2}{3}}\mathrm{d}x+2\int \sqrt[5]{x}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{\frac{5}{3}}}{5}+2\int \sqrt[5]{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{2}{3}}\mathrm{d}x with \frac{3x^{\frac{5}{3}}}{5}.
\frac{3x^{\frac{5}{3}}}{5}+\frac{5x^{\frac{6}{5}}}{3}
Rewrite \sqrt[5]{x} as x^{\frac{1}{5}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{5}}\mathrm{d}x with \frac{x^{\frac{6}{5}}}{\frac{6}{5}}. Simplify. Multiply 2 times \frac{5x^{\frac{6}{5}}}{6}.
\frac{3x^{\frac{5}{3}}}{5}+\frac{5x^{\frac{6}{5}}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.