Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \left(\sqrt{10}\right)^{2}-\left(\sqrt{5}\right)^{2}\mathrm{d}x
Consider \left(\sqrt{10}-\sqrt{5}\right)\left(\sqrt{10}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\int 10-\left(\sqrt{5}\right)^{2}\mathrm{d}x
The square of \sqrt{10} is 10.
\int 10-5\mathrm{d}x
The square of \sqrt{5} is 5.
\int 5\mathrm{d}x
Subtract 5 from 10 to get 5.
5x
Find the integral of 5 using the table of common integrals rule \int a\mathrm{d}x=ax.
5x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.