Evaluate
4\ln(|x|)-\cos(x)-\frac{x^{4}}{2}+С
Differentiate w.r.t. x
\sin(x)-2x^{3}+\frac{4}{x}
Share
Copied to clipboard
\int \sin(x)\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int \frac{4}{x}\mathrm{d}x
Integrate the sum term by term.
\int \sin(x)\mathrm{d}x-2\int x^{3}\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
Factor out the constant in each of the terms.
-\cos(x)-2\int x^{3}\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
-\cos(x)-\frac{x^{4}}{2}+4\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -2 times \frac{x^{4}}{4}.
-\cos(x)-\frac{x^{4}}{2}+4\ln(|x|)
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
-\cos(x)-\frac{x^{4}}{2}+4\ln(|x|)+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}