Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \sin(x)\mathrm{d}x+\int 7\cos(x)\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
\int \sin(x)\mathrm{d}x+7\int \cos(x)\mathrm{d}x+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
-\cos(x)+7\int \cos(x)\mathrm{d}x+\int -1\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
-\cos(x)+7\sin(x)+\int -1\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
-\cos(x)+7\sin(x)-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\cos(x)+7\sin(x)-x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.