Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{4}{\sqrt[5]{t}}\mathrm{d}t+\int \frac{3}{t^{6}}\mathrm{d}t
Integrate the sum term by term.
4\int \frac{1}{\sqrt[5]{t}}\mathrm{d}t+3\int \frac{1}{t^{6}}\mathrm{d}t
Factor out the constant in each of the terms.
5t^{\frac{4}{5}}+3\int \frac{1}{t^{6}}\mathrm{d}t
Rewrite \frac{1}{\sqrt[5]{t}} as t^{-\frac{1}{5}}. Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{-\frac{1}{5}}\mathrm{d}t with \frac{t^{\frac{4}{5}}}{\frac{4}{5}}. Simplify. Multiply 4 times \frac{5t^{\frac{4}{5}}}{4}.
5t^{\frac{4}{5}}-\frac{\frac{3}{t^{5}}}{5}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{t^{6}}\mathrm{d}t with -\frac{1}{5t^{5}}. Multiply 3 times -\frac{1}{5t^{5}}.
5t^{\frac{4}{5}}-\frac{3}{5t^{5}}
Simplify.
5t^{\frac{4}{5}}-\frac{3}{5t^{5}}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.