Evaluate
2\ln(|x|)+\cos(x)-\frac{1}{x}+С
Differentiate w.r.t. x
-\sin(x)+\frac{2}{x}+\frac{1}{x^{2}}
Share
Copied to clipboard
\int \frac{1}{x^{2}}\mathrm{d}x+\int \frac{2}{x}\mathrm{d}x+\int -\sin(x)\mathrm{d}x
Integrate the sum term by term.
\int \frac{1}{x^{2}}\mathrm{d}x+2\int \frac{1}{x}\mathrm{d}x-\int \sin(x)\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{1}{x}+2\int \frac{1}{x}\mathrm{d}x-\int \sin(x)\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}.
-\frac{1}{x}+2\ln(|x|)-\int \sin(x)\mathrm{d}x
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
-\frac{1}{x}+2\ln(|x|)+\cos(x)
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result. Multiply -1 times -\cos(x).
-\frac{1}{x}+2\ln(|x|)+\cos(x)+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}