Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{x^{2}}\mathrm{d}x+\int \frac{2}{x}\mathrm{d}x+\int -\sin(x)\mathrm{d}x
Integrate the sum term by term.
\int \frac{1}{x^{2}}\mathrm{d}x+2\int \frac{1}{x}\mathrm{d}x-\int \sin(x)\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{1}{x}+2\int \frac{1}{x}\mathrm{d}x-\int \sin(x)\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}.
-\frac{1}{x}+2\ln(|x|)-\int \sin(x)\mathrm{d}x
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
-\frac{1}{x}+2\ln(|x|)+\cos(x)
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result. Multiply -1 times -\cos(x).
-\frac{1}{x}+2\ln(|x|)+\cos(x)+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.