Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \frac{\frac{1}{6}+\frac{3}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Least common multiple of 6 and 2 is 6. Convert \frac{1}{6} and \frac{1}{2} to fractions with denominator 6.
\int \frac{\frac{1+3}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Since \frac{1}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\int \frac{\frac{4}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Add 1 and 3 to get 4.
\int \frac{\frac{2}{3}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\int \frac{\frac{2}{3}}{\frac{6}{3}-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Convert 2 to fraction \frac{6}{3}.
\int \frac{\frac{2}{3}}{\frac{6-1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Since \frac{6}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\int \frac{\frac{2}{3}}{\frac{5}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Subtract 1 from 6 to get 5.
\int \frac{2}{3}\times \frac{3}{5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Divide \frac{2}{3} by \frac{5}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{5}{3}.
\int \frac{2\times 3}{3\times 5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Multiply \frac{2}{3} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\int \frac{2}{5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Cancel out 3 in both numerator and denominator.
\int \frac{2}{5}-\left(\frac{3}{6}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
\int \frac{2}{5}-\frac{3-1}{6}\times \frac{6}{5}\mathrm{d}x
Since \frac{3}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\int \frac{2}{5}-\frac{2}{6}\times \frac{6}{5}\mathrm{d}x
Subtract 1 from 3 to get 2.
\int \frac{2}{5}-\frac{1}{3}\times \frac{6}{5}\mathrm{d}x
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\int \frac{2}{5}-\frac{1\times 6}{3\times 5}\mathrm{d}x
Multiply \frac{1}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\int \frac{2}{5}-\frac{6}{15}\mathrm{d}x
Do the multiplications in the fraction \frac{1\times 6}{3\times 5}.
\int \frac{2}{5}-\frac{2}{5}\mathrm{d}x
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\int 0\mathrm{d}x
Subtract \frac{2}{5} from \frac{2}{5} to get 0.
0
Find the integral of 0 using the table of common integrals rule \int a\mathrm{d}x=ax.
С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.