Evaluate
-\frac{896x}{25}+С
Differentiate w.r.t. x
-\frac{896}{25} = -35\frac{21}{25} = -35.84
Share
Copied to clipboard
\int \left(-\frac{3}{5}-\frac{5}{6}\right)\left(-7+1\right)\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
\int \left(-\frac{18}{30}-\frac{25}{30}\right)\left(-7+1\right)\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Least common multiple of 5 and 6 is 30. Convert -\frac{3}{5} and \frac{5}{6} to fractions with denominator 30.
\int \frac{-18-25}{30}\left(-7+1\right)\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Since -\frac{18}{30} and \frac{25}{30} have the same denominator, subtract them by subtracting their numerators.
\int -\frac{43}{30}\left(-7+1\right)\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Subtract 25 from -18 to get -43.
\int -\frac{43}{30}\left(-6\right)\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Add -7 and 1 to get -6.
\int \frac{-43\left(-6\right)}{30}\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Express -\frac{43}{30}\left(-6\right) as a single fraction.
\int \frac{258}{30}\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Multiply -43 and -6 to get 258.
\int \frac{43}{5}\left(\frac{3}{5}-5\right)+2\mathrm{d}x
Reduce the fraction \frac{258}{30} to lowest terms by extracting and canceling out 6.
\int \frac{43}{5}\left(\frac{3}{5}-\frac{25}{5}\right)+2\mathrm{d}x
Convert 5 to fraction \frac{25}{5}.
\int \frac{43}{5}\times \frac{3-25}{5}+2\mathrm{d}x
Since \frac{3}{5} and \frac{25}{5} have the same denominator, subtract them by subtracting their numerators.
\int \frac{43}{5}\left(-\frac{22}{5}\right)+2\mathrm{d}x
Subtract 25 from 3 to get -22.
\int \frac{43\left(-22\right)}{5\times 5}+2\mathrm{d}x
Multiply \frac{43}{5} times -\frac{22}{5} by multiplying numerator times numerator and denominator times denominator.
\int \frac{-946}{25}+2\mathrm{d}x
Do the multiplications in the fraction \frac{43\left(-22\right)}{5\times 5}.
\int -\frac{946}{25}+2\mathrm{d}x
Fraction \frac{-946}{25} can be rewritten as -\frac{946}{25} by extracting the negative sign.
\int -\frac{946}{25}+\frac{50}{25}\mathrm{d}x
Convert 2 to fraction \frac{50}{25}.
\int \frac{-946+50}{25}\mathrm{d}x
Since -\frac{946}{25} and \frac{50}{25} have the same denominator, add them by adding their numerators.
\int -\frac{896}{25}\mathrm{d}x
Add -946 and 50 to get -896.
-\frac{896x}{25}
Find the integral of -\frac{896}{25} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{896x}{25}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}