Evaluate
\frac{11x}{126}+С
Differentiate w.r.t. x
\frac{11}{126} = 0.0873015873015873
Share
Copied to clipboard
\int \frac{5}{42}-\frac{1}{7}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Reduce the fraction \frac{3}{21} to lowest terms by extracting and canceling out 3.
\int \frac{5}{42}-\frac{6}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Least common multiple of 42 and 7 is 42. Convert \frac{5}{42} and \frac{1}{7} to fractions with denominator 42.
\int \frac{5-6}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Since \frac{5}{42} and \frac{6}{42} have the same denominator, subtract them by subtracting their numerators.
\int -\frac{1}{42}+\frac{4}{28}-\frac{2}{63}\mathrm{d}x
Subtract 6 from 5 to get -1.
\int -\frac{1}{42}+\frac{1}{7}-\frac{2}{63}\mathrm{d}x
Reduce the fraction \frac{4}{28} to lowest terms by extracting and canceling out 4.
\int -\frac{1}{42}+\frac{6}{42}-\frac{2}{63}\mathrm{d}x
Least common multiple of 42 and 7 is 42. Convert -\frac{1}{42} and \frac{1}{7} to fractions with denominator 42.
\int \frac{-1+6}{42}-\frac{2}{63}\mathrm{d}x
Since -\frac{1}{42} and \frac{6}{42} have the same denominator, add them by adding their numerators.
\int \frac{5}{42}-\frac{2}{63}\mathrm{d}x
Add -1 and 6 to get 5.
\int \frac{15}{126}-\frac{4}{126}\mathrm{d}x
Least common multiple of 42 and 63 is 126. Convert \frac{5}{42} and \frac{2}{63} to fractions with denominator 126.
\int \frac{15-4}{126}\mathrm{d}x
Since \frac{15}{126} and \frac{4}{126} have the same denominator, subtract them by subtracting their numerators.
\int \frac{11}{126}\mathrm{d}x
Subtract 4 from 15 to get 11.
\frac{11x}{126}
Find the integral of \frac{11}{126} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{11x}{126}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}