Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\left(\frac{\sin(\frac{\theta }{2})}{\cos(\frac{\theta }{2})}\right)^{3}x
Find the integral of \left(\frac{\sin(\frac{\theta }{2})}{\cos(\frac{\theta }{2})}\right)^{3} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{\left(\sin(\frac{\theta }{2})\right)^{3}x}{\left(\cos(\frac{\theta }{2})\right)^{3}}
Simplify.
\begin{matrix}\frac{\left(\sin(\frac{\theta }{2})\right)^{3}x}{\left(\cos(\frac{\theta }{2})\right)^{3}}+С_{3},&\end{matrix}
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.