Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt[5]{t^{4}}+10t^{5}-5t^{3}\mathrm{d}t
Use the distributive property to multiply t^{2} by 10t^{3}-5t.
\int t^{\frac{4}{5}}\mathrm{d}t+\int 10t^{5}\mathrm{d}t+\int -5t^{3}\mathrm{d}t
Integrate the sum term by term.
\int t^{\frac{4}{5}}\mathrm{d}t+10\int t^{5}\mathrm{d}t-5\int t^{3}\mathrm{d}t
Factor out the constant in each of the terms.
\frac{5t^{\frac{9}{5}}}{9}+10\int t^{5}\mathrm{d}t-5\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{\frac{4}{5}}\mathrm{d}t with \frac{5t^{\frac{9}{5}}}{9}.
\frac{5t^{\frac{9}{5}}}{9}+\frac{5t^{6}}{3}-5\int t^{3}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{5}\mathrm{d}t with \frac{t^{6}}{6}. Multiply 10 times \frac{t^{6}}{6}.
\frac{5t^{\frac{9}{5}}}{9}+\frac{5t^{6}}{3}-\frac{5t^{4}}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply -5 times \frac{t^{4}}{4}.
\frac{5t^{\frac{9}{5}}}{9}+\frac{5t^{6}}{3}-\frac{5t^{4}}{4}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.