Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Share

\int \left(\sqrt{y}\right)^{2}+\sqrt{y}\times \frac{1}{\sqrt{y}}\mathrm{d}y
Use the distributive property to multiply \sqrt{y} by \sqrt{y}+\frac{1}{\sqrt{y}}.
\int y+\sqrt{y}\times \frac{1}{\sqrt{y}}\mathrm{d}y
Calculate \sqrt{y} to the power of 2 and get y.
\int y+1\mathrm{d}y
Cancel out \sqrt{y} and \sqrt{y}.
\int y\mathrm{d}y+\int 1\mathrm{d}y
Integrate the sum term by term.
\frac{y^{2}}{2}+\int 1\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}.
\frac{y^{2}}{2}+y
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{y^{2}}{2}+y+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.