Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\sqrt{x}\right)^{2}\sqrt{x}\mathrm{d}x
Multiply \sqrt{x} and \sqrt{x} to get \left(\sqrt{x}\right)^{2}.
\int \left(\sqrt{x}\right)^{3}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{2x^{\frac{5}{2}}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{3}{2}}\mathrm{d}x with \frac{2x^{\frac{5}{2}}}{5}.
\frac{2x^{\frac{5}{2}}}{5}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.