Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \operatorname{sech}(\frac{1}{4})x^{2}\tanh(\frac{1}{4})\mathrm{d}x
Multiply x and x to get x^{2}.
\operatorname{sech}(\frac{1}{4})\tanh(\frac{1}{4})\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\operatorname{sech}(\frac{1}{4})\tanh(\frac{1}{4})\times \frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{\operatorname{sech}(\frac{1}{4})\tanh(\frac{1}{4})x^{3}}{3}
Simplify.
\frac{\operatorname{sech}(\frac{1}{4})\tanh(\frac{1}{4})x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.