Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\int \ln(2a+x^{2})\mathrm{d}x}{\ln(e)}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{\ln(2a+x^{2})x+2\sqrt{a}\sqrt{2}\arctan(\frac{\sqrt{2}x}{2\sqrt{a}})-2x}{\ln(e)}
Simplify.
\ln(2a+x^{2})x+2\sqrt{a}\sqrt{2}\arctan(\frac{\sqrt{2}x}{2\sqrt{a}})-2x
Simplify.
\begin{matrix}\ln(2a+x^{2})x+2\sqrt{a}\sqrt{2}\arctan(\frac{\sqrt{2}x}{2\sqrt{a}})-2x+С_{3},&\end{matrix}
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.