Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int {\log_{10} {(\frac{{(m ^ {2} + 4 m - 5)} ^ {\pi}}{0.19486506597972128 ^ {\cos(\pi)}})}} dx
Evaluate trigonometric functions in the problem
\log_{10}\left(\frac{\left(m^{2}+4m-5\right)^{\pi }}{0.19486506597972128^{\cos(\pi )}}\right)x
Find the integral of \log_{10}\left(\frac{\left(m^{2}+4m-5\right)^{\pi }}{0.19486506597972128^{\cos(\pi )}}\right) using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{\left(\pi \ln(m^{2}+4m-5)+\ln(\frac{608953331186629}{3125000000000000})\right)x}{\ln(10)}
Simplify.
\frac{\left(\pi \ln(m^{2}+4m-5)+\ln(\frac{608953331186629}{3125000000000000})\right)x}{\ln(10)}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.