Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \log_{e}\left(xx\right)\mathrm{d}x
Apply rule a^{\log_{a}\left(b\right)}=b, where a=e and b=x.
\int \log_{e}\left(x^{2}\right)\mathrm{d}x
Multiply x and x to get x^{2}.
\frac{\ln(x^{2})x-2x}{\ln(e)}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\ln(x^{2})x-2x
Simplify.
\ln(x^{2})x-2x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.