Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int _{-\pi }^{\pi }e^{2x}\sin(nx)\mathrm{d}xx
Find the integral of \int _{-\pi }^{\pi }e^{2x}\sin(nx)\mathrm{d}x using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{\left(2\sin(n\pi )\left(e^{4\pi }+1\right)+n\cos(n\pi )\left(-e^{4\pi }+1\right)\right)x}{\left(4+n^{2}\right)e^{2\pi }}
Simplify.
\frac{\left(2\sin(n\pi )\left(e^{4\pi }+1\right)+n\cos(n\pi )\left(-e^{4\pi }+1\right)\right)x}{\left(4+n^{2}\right)e^{2\pi }}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.