Evaluate
\frac{x\left(n\cos(\pi n)-\left(e^{\pi }\right)^{4}n\cos(\pi n)+2\left(e^{\pi }\right)^{4}\sin(\pi n)+2\sin(\pi n)\right)}{\left(e^{\pi }\right)^{2}\left(n^{2}+4\right)}+С
Differentiate w.r.t. x
\frac{n\cos(\pi n)-e^{4\pi }n\cos(\pi n)+2e^{4\pi }\sin(\pi n)+2\sin(\pi n)}{e^{2\pi }\left(n^{2}+4\right)}
Share
Copied to clipboard
\int _{-\pi }^{\pi }e^{2x}\sin(nx)\mathrm{d}xx
Find the integral of \int _{-\pi }^{\pi }e^{2x}\sin(nx)\mathrm{d}x using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{\left(2\sin(n\pi )\left(e^{4\pi }+1\right)+n\cos(n\pi )\left(-e^{4\pi }+1\right)\right)x}{\left(4+n^{2}\right)e^{2\pi }}
Simplify.
\frac{\left(2\sin(n\pi )\left(e^{4\pi }+1\right)+n\cos(n\pi )\left(-e^{4\pi }+1\right)\right)x}{\left(4+n^{2}\right)e^{2\pi }}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}