Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. z
Tick mark Image

Share

\frac{\int z\mathrm{d}z}{y}
Factor out the constant using \int af\left(z\right)\mathrm{d}z=a\int f\left(z\right)\mathrm{d}z.
\frac{z^{2}}{2y}
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z\mathrm{d}z with \frac{z^{2}}{2}.
\frac{z^{2}}{2y}+С
If F\left(z\right) is an antiderivative of f\left(z\right), then the set of all antiderivatives of f\left(z\right) is given by F\left(z\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.