Skip to main content
Solve for C
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

3\int \frac{x^{4}}{1+x^{2}}\mathrm{d}x=x^{3}-3x+3\arctan(x)+3C
Multiply both sides of the equation by 3.
x^{3}-3x+3\arctan(x)+3C=3\int \frac{x^{4}}{1+x^{2}}\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
-3x+3\arctan(x)+3C=3\int \frac{x^{4}}{1+x^{2}}\mathrm{d}x-x^{3}
Subtract x^{3} from both sides.
3\arctan(x)+3C=3\int \frac{x^{4}}{1+x^{2}}\mathrm{d}x-x^{3}+3x
Add 3x to both sides.
3C=3\int \frac{x^{4}}{1+x^{2}}\mathrm{d}x-x^{3}+3x-3\arctan(x)
Subtract 3\arctan(x) from both sides.
3C=3\left(\arctan(x)-\arctan(x)+С\right)
The equation is in standard form.
\frac{3C}{3}=\frac{С}{3}
Divide both sides by 3.
C=\frac{С}{3}
Dividing by 3 undoes the multiplication by 3.