Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{x^{2}+x+1}\mathrm{d}x
Factor the expressions that are not already factored in \frac{x^{4}+x^{2}+1}{x^{2}+x+1}.
\int x^{2}-x+1\mathrm{d}x
Cancel out x^{2}+x+1 in both numerator and denominator.
\int x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{x^{2}}{2}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}-\frac{x^{2}}{2}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
Simplify.
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.