Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x\left(x-3\right)\left(x-1\right)}{x\left(-x+1\right)}\mathrm{d}x
Factor the expressions that are not already factored in \frac{x^{3}-4x^{2}+3x}{x-x^{2}}.
\int \frac{-x\left(x-3\right)\left(-x+1\right)}{x\left(-x+1\right)}\mathrm{d}x
Extract the negative sign in -1+x.
\int -\left(x-3\right)\mathrm{d}x
Cancel out x\left(-x+1\right) in both numerator and denominator.
\int -x+3\mathrm{d}x
Expand the expression.
\int -x\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
-\int x\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{2}}{2}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-\frac{x^{2}}{2}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
3x-\frac{x^{2}}{2}
Simplify.
3x-\frac{x^{2}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.