Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(-x+1\right)x^{2}}{x}\mathrm{d}x
Factor the expressions that are not already factored in \frac{x^{2}-x^{3}}{x}.
\int x\left(-x+1\right)\mathrm{d}x
Cancel out x in both numerator and denominator.
\int -x^{2}+x\mathrm{d}x
Expand the expression.
\int -x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\frac{x^{3}}{3}
Simplify.
\frac{x^{2}}{2}-\frac{x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.