Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{-4x^{2}+4x}{x-1}\mathrm{d}x
Combine x^{2} and -5x^{2} to get -4x^{2}.
\int \frac{4x\left(-x+1\right)}{x-1}\mathrm{d}x
Factor the expressions that are not already factored in \frac{-4x^{2}+4x}{x-1}.
\int \frac{-4x\left(x-1\right)}{x-1}\mathrm{d}x
Extract the negative sign in 1-x.
\int -4x\mathrm{d}x
Cancel out x-1 in both numerator and denominator.
-4\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
-2x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.