Evaluate
\frac{Qx}{Q+1}+С
Differentiate w.r.t. x
\frac{Q}{Q+1}
Share
Copied to clipboard
\int \frac{1}{1+\frac{1\left(\frac{\pi }{2}-\frac{2x}{2}\right)}{Q\left(\frac{\pi }{2}-x\right)}}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\int \frac{1}{1+\frac{1\times \frac{\pi -2x}{2}}{Q\left(\frac{\pi }{2}-x\right)}}\mathrm{d}x
Since \frac{\pi }{2} and \frac{2x}{2} have the same denominator, subtract them by subtracting their numerators.
\int \frac{1}{1+\frac{\frac{\pi -2x}{2}}{Q\left(\frac{\pi }{2}-x\right)}}\mathrm{d}x
Express 1\times \frac{\pi -2x}{2} as a single fraction.
\int \frac{1}{1+\frac{\frac{\pi -2x}{2}}{Q\left(\frac{\pi }{2}-\frac{2x}{2}\right)}}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\int \frac{1}{1+\frac{\frac{\pi -2x}{2}}{Q\times \frac{\pi -2x}{2}}}\mathrm{d}x
Since \frac{\pi }{2} and \frac{2x}{2} have the same denominator, subtract them by subtracting their numerators.
\int \frac{1}{1+\frac{\frac{\pi -2x}{2}}{\frac{Q\left(\pi -2x\right)}{2}}}\mathrm{d}x
Express Q\times \frac{\pi -2x}{2} as a single fraction.
\int \frac{1}{1+\frac{\left(\pi -2x\right)\times 2}{2Q\left(\pi -2x\right)}}\mathrm{d}x
Divide \frac{\pi -2x}{2} by \frac{Q\left(\pi -2x\right)}{2} by multiplying \frac{\pi -2x}{2} by the reciprocal of \frac{Q\left(\pi -2x\right)}{2}.
\int \frac{1}{1+\frac{1}{Q}}\mathrm{d}x
Cancel out 2\left(-2x+\pi \right) in both numerator and denominator.
\int \frac{1}{\frac{Q}{Q}+\frac{1}{Q}}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{Q}{Q}.
\int \frac{1}{\frac{Q+1}{Q}}\mathrm{d}x
Since \frac{Q}{Q} and \frac{1}{Q} have the same denominator, add them by adding their numerators.
\int \frac{Q}{Q+1}\mathrm{d}x
Divide 1 by \frac{Q+1}{Q} by multiplying 1 by the reciprocal of \frac{Q+1}{Q}.
\frac{Q}{Q+1}x
Find the integral of \frac{Q}{Q+1} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{Qx}{Q+1}
Simplify.
\frac{Qx}{Q+1}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}