Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. g
Tick mark Image

Similar Problems from Web Search

Share

\frac{\int \frac{1}{\sqrt{h}}\mathrm{d}h}{\sqrt{2}\sqrt{g}}
Factor out the constant using \int af\left(h\right)\mathrm{d}h=a\int f\left(h\right)\mathrm{d}h.
\frac{2\sqrt{h}}{\sqrt{2}\sqrt{g}}
Rewrite \frac{1}{\sqrt{h}} as h^{-\frac{1}{2}}. Since \int h^{k}\mathrm{d}h=\frac{h^{k+1}}{k+1} for k\neq -1, replace \int h^{-\frac{1}{2}}\mathrm{d}h with \frac{h^{\frac{1}{2}}}{\frac{1}{2}}. Simplify and convert from exponential to radical form.
\frac{\sqrt{h}\sqrt{2}}{\sqrt{g}}
Simplify.
\frac{\sqrt{h}\sqrt{2}}{\sqrt{g}}+С
If F\left(h\right) is an antiderivative of f\left(h\right), then the set of all antiderivatives of f\left(h\right) is given by F\left(h\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.