Solve for k
\left\{\begin{matrix}k=\frac{\ln(|T-27|)+С}{t+С_{1}}\text{, }&t\neq -С\text{ and }T\neq 27\\k\in \mathrm{R}\text{, }&С=-\ln(|T-27|)\text{ and }t=\ln(|T-27|)\text{ and }T\neq 27\end{matrix}\right.
Share
Copied to clipboard
k\int 1\mathrm{d}t=\int \frac{1}{T-27}\mathrm{d}T
Swap sides so that all variable terms are on the left hand side.
\left(t+С\right)k=\ln(|T-27|)+С
The equation is in standard form.
\frac{\left(t+С\right)k}{t+С}=\frac{\ln(|T-27|)+С}{t+С}
Divide both sides by t+С.
k=\frac{\ln(|T-27|)+С}{t+С}
Dividing by t+С undoes the multiplication by t+С.
k=\frac{\ln(|T-27|)+С}{t+С_{1}}
Divide \ln(|T-27|)+С by t+С.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}