Solve for x
\left\{\begin{matrix}x=\frac{-С-2\sqrt{D}}{t+С_{1}}\text{, }&D>0\text{ and }|t|\neq |С|\\x\in \mathrm{R}\text{, }&\left(D=С^{2}\text{ and }t=-С_{1}\text{ and }С_{2}<0\right)\text{ or }\left(С_{3}=t\text{ and }D=t^{2}\text{ and }t<0\right)\end{matrix}\right.
Share
Copied to clipboard
\left(-x\right)\int 1\mathrm{d}t=\int \frac{1}{\sqrt{D}}\mathrm{d}D
Swap sides so that all variable terms are on the left hand side.
-x\int 1\mathrm{d}t=\int \frac{1}{\sqrt{D}}\mathrm{d}D
Reorder the terms.
\left(-\left(t+С\right)\right)x=\frac{D}{\sqrt{D}}+С
The equation is in standard form.
\frac{\left(-\left(t+С\right)\right)x}{-\left(t+С\right)}=\frac{\sqrt{D}+С}{-\left(t+С\right)}
Divide both sides by -\left(t+С\right).
x=\frac{\sqrt{D}+С}{-\left(t+С\right)}
Dividing by -\left(t+С\right) undoes the multiplication by -\left(t+С\right).
x=-\frac{\sqrt{D}+С}{t+С_{1}}
Divide \sqrt{D}+С by -\left(t+С\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}