Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\left(-x\right)\int 1\mathrm{d}t=\int \frac{1}{\sqrt{D}}\mathrm{d}D
Swap sides so that all variable terms are on the left hand side.
-x\int 1\mathrm{d}t=\int \frac{1}{\sqrt{D}}\mathrm{d}D
Reorder the terms.
\left(-\left(t+С\right)\right)x=\frac{D}{\sqrt{D}}+С
The equation is in standard form.
\frac{\left(-\left(t+С\right)\right)x}{-\left(t+С\right)}=\frac{\sqrt{D}+С}{-\left(t+С\right)}
Divide both sides by -\left(t+С\right).
x=\frac{\sqrt{D}+С}{-\left(t+С\right)}
Dividing by -\left(t+С\right) undoes the multiplication by -\left(t+С\right).
x=-\frac{\sqrt{D}+С}{t+С_{1}}
Divide \sqrt{D}+С by -\left(t+С\right).