Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{c}{\left(\sin(w)\right)^{2}}\int \cos(x)\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{c}{\left(\sin(w)\right)^{2}}\sin(x)
Use \int \cos(c)\mathrm{d}c=\sin(c) from the table of common integrals to obtain the result.
\frac{c\sin(x)}{\left(\sin(w)\right)^{2}}
Simplify.
\begin{matrix}\frac{c\sin(x)}{\left(\sin(w)\right)^{2}}+С_{3},&\end{matrix}
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.