Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\int a\mathrm{d}a}{x}
Factor out the constant using \int af\left(a\right)\mathrm{d}a=a\int f\left(a\right)\mathrm{d}a.
\frac{a^{2}}{2x}
Since \int a^{k}\mathrm{d}a=\frac{a^{k+1}}{k+1} for k\neq -1, replace \int a\mathrm{d}a with \frac{a^{2}}{2}.
\frac{a^{2}}{2x}+С
If F\left(a\right) is an antiderivative of f\left(a\right), then the set of all antiderivatives of f\left(a\right) is given by F\left(a\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.