Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(2x^{2}+1\right)\left(4x^{4}-2x^{2}+1\right)}{2x^{2}+1}\mathrm{d}x
Factor the expressions that are not already factored in \frac{8x^{6}+1}{2x^{2}+1}.
\int 4x^{4}-2x^{2}+1\mathrm{d}x
Cancel out 2x^{2}+1 in both numerator and denominator.
\int 4x^{4}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
4\int x^{4}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{5}}{5}-2\int x^{2}\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 4 times \frac{x^{5}}{5}.
\frac{4x^{5}}{5}-\frac{2x^{3}}{3}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
\frac{4x^{5}}{5}-\frac{2x^{3}}{3}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x-\frac{2x^{3}}{3}+\frac{4x^{5}}{5}
Simplify.
x-\frac{2x^{3}}{3}+\frac{4x^{5}}{5}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.