Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{1+j^{2}}\int y\mathrm{d}y
Factor out the constant using \int af\left(y\right)\mathrm{d}y=a\int f\left(y\right)\mathrm{d}y.
\frac{3}{1+j^{2}}\times \frac{y^{2}}{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}.
\frac{3y^{2}}{2\left(1+j^{2}\right)}
Simplify.
\frac{3y^{2}}{2\left(1+j^{2}\right)}+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.