Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(2x^{2}-x+3\right)x^{3}}{x^{2}}\mathrm{d}x
Factor the expressions that are not already factored in \frac{3x^{3}-x^{4}+2x^{5}}{x^{2}}.
\int x\left(2x^{2}-x+3\right)\mathrm{d}x
Cancel out x^{2} in both numerator and denominator.
\int 2x^{3}-x^{2}+3x\mathrm{d}x
Expand the expression.
\int 2x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 3x\mathrm{d}x
Integrate the sum term by term.
2\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{2}-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2 times \frac{x^{4}}{4}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+3\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+\frac{3x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}
Simplify.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.