Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(3x-4\right)\left(x+2\right)}{x+2}\mathrm{d}x
Factor the expressions that are not already factored in \frac{3x^{2}+2x-8}{x+2}.
\int 3x-4\mathrm{d}x
Cancel out x+2 in both numerator and denominator.
\int 3x\mathrm{d}x+\int -4\mathrm{d}x
Integrate the sum term by term.
3\int x\mathrm{d}x+\int -4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{2}}{2}+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
\frac{3x^{2}}{2}-4x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
-4x+\frac{3x^{2}}{2}
Simplify.
-4x+\frac{3x^{2}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.