Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\ln(2)\times \frac{1}{\ln(10)}}\int 2^{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{1}{\ln(2)\times \frac{1}{\ln(10)}}\times \frac{2^{x}}{\ln(2)}
Use \int p^{q}\mathrm{d}q=\frac{p^{q}}{\ln(p)} from the table of common integrals to obtain the result.
\frac{\ln(10)\times 2^{x}}{\ln(2)^{2}}
Simplify.
\frac{\ln(10)\times 2^{x}}{\ln(2)^{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.