Evaluate
\frac{\ln(10)\times 2^{x}}{\ln(2)^{2}}+С
Differentiate w.r.t. x
\log_{2}\left(10\right)\times 2^{x}
Share
Copied to clipboard
\frac{1}{\ln(2)\times \frac{1}{\ln(10)}}\int 2^{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{1}{\ln(2)\times \frac{1}{\ln(10)}}\times \frac{2^{x}}{\ln(2)}
Use \int p^{q}\mathrm{d}q=\frac{p^{q}}{\ln(p)} from the table of common integrals to obtain the result.
\frac{\ln(10)\times 2^{x}}{\ln(2)^{2}}
Simplify.
\frac{\ln(10)\times 2^{x}}{\ln(2)^{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}