Evaluate
-\frac{3}{2x^{2}}+С
Differentiate w.r.t. x
\frac{3}{x^{3}}
Share
Copied to clipboard
\int \frac{3}{x^{2}}\times \frac{1}{x}\mathrm{d}x
Express \frac{1}{x^{2}}\times 3 as a single fraction.
\int \frac{3}{x^{2}x}\mathrm{d}x
Multiply \frac{3}{x^{2}} times \frac{1}{x} by multiplying numerator times numerator and denominator times denominator.
\int \frac{3}{x^{3}}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
3\int \frac{1}{x^{3}}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{\frac{3}{x^{2}}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{3}}\mathrm{d}x with -\frac{1}{2x^{2}}.
-\frac{3}{2x^{2}}
Simplify.
-\frac{3}{2x^{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}