Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\frac{y}{e^{\log_{e}\left(x\right)+C}-1}
Find the integral of \frac{1}{e^{\log_{e}\left(x\right)+C}-1} using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{y}{xe^{C}-1}
Simplify.
\begin{matrix}\frac{y}{xe^{C}-1}+С_{3},&\end{matrix}
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.