Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{4}\left(14400-240t+t^{2}\right)\mathrm{d}t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(120-t\right)^{2}.
\int 3600-60t+\frac{1}{4}t^{2}\mathrm{d}t
Use the distributive property to multiply \frac{1}{4} by 14400-240t+t^{2}.
\int 3600\mathrm{d}t+\int -60t\mathrm{d}t+\int \frac{t^{2}}{4}\mathrm{d}t
Integrate the sum term by term.
\int 3600\mathrm{d}t-60\int t\mathrm{d}t+\frac{\int t^{2}\mathrm{d}t}{4}
Factor out the constant in each of the terms.
3600t-60\int t\mathrm{d}t+\frac{\int t^{2}\mathrm{d}t}{4}
Find the integral of 3600 using the table of common integrals rule \int a\mathrm{d}t=at.
3600t-30t^{2}+\frac{\int t^{2}\mathrm{d}t}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -60 times \frac{t^{2}}{2}.
3600t-30t^{2}+\frac{t^{3}}{12}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply \frac{1}{4} times \frac{t^{3}}{3}.
3600t-30t^{2}+\frac{t^{3}}{12}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.