Evaluate
-\frac{\left(120-t\right)^{3}}{12}+С
Differentiate w.r.t. t
\frac{\left(120-t\right)^{2}}{4}
Share
Copied to clipboard
\int \frac{1}{4}\left(14400-240t+t^{2}\right)\mathrm{d}t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(120-t\right)^{2}.
\int 3600-60t+\frac{1}{4}t^{2}\mathrm{d}t
Use the distributive property to multiply \frac{1}{4} by 14400-240t+t^{2}.
\int 3600\mathrm{d}t+\int -60t\mathrm{d}t+\int \frac{t^{2}}{4}\mathrm{d}t
Integrate the sum term by term.
\int 3600\mathrm{d}t-60\int t\mathrm{d}t+\frac{\int t^{2}\mathrm{d}t}{4}
Factor out the constant in each of the terms.
3600t-60\int t\mathrm{d}t+\frac{\int t^{2}\mathrm{d}t}{4}
Find the integral of 3600 using the table of common integrals rule \int a\mathrm{d}t=at.
3600t-30t^{2}+\frac{\int t^{2}\mathrm{d}t}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -60 times \frac{t^{2}}{2}.
3600t-30t^{2}+\frac{t^{3}}{12}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply \frac{1}{4} times \frac{t^{3}}{3}.
3600t-30t^{2}+\frac{t^{3}}{12}+С
If F\left(t\right) is an antiderivative of f\left(t\right), then the set of all antiderivatives of f\left(t\right) is given by F\left(t\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}