Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. ε_0
Tick mark Image

Share

\frac{1}{4\pi \epsilon _{0}}\int \cos(\theta )\mathrm{d}\theta
Factor out the constant using \int af\left(\theta \right)\mathrm{d}\theta =a\int f\left(\theta \right)\mathrm{d}\theta .
\frac{1}{4\pi \epsilon _{0}}\sin(\theta )
Use \int \cos(\epsilon _{0})\mathrm{d}\epsilon _{0}=\sin(\epsilon _{0}) from the table of common integrals to obtain the result.
\frac{\sin(\theta )}{4\pi \epsilon _{0}}
Simplify.
\frac{\sin(\theta )}{4\pi \epsilon _{0}}+С
If F\left(\theta \right) is an antiderivative of f\left(\theta \right), then the set of all antiderivatives of f\left(\theta \right) is given by F\left(\theta \right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.