Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}}{2}\int \frac{1}{\sqrt[4]{x}}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{\sqrt{5}}{2}\times \frac{4x^{\frac{3}{4}}}{3}
Rewrite \frac{1}{\sqrt[4]{x}} as x^{-\frac{1}{4}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{1}{4}}\mathrm{d}x with \frac{x^{\frac{3}{4}}}{\frac{3}{4}}. Simplify.
\frac{2\sqrt{5}x^{\frac{3}{4}}}{3}
Simplify.
\frac{2\sqrt{5}x^{\frac{3}{4}}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.