Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{\int \frac{1}{y}\mathrm{d}y}{-2}
Factor out the constant using \int af\left(y\right)\mathrm{d}y=a\int f\left(y\right)\mathrm{d}y.
\frac{\ln(|y|)}{-2}
Use \int \frac{1}{y}\mathrm{d}y=\ln(|y|) from the table of common integrals to obtain the result.
-\frac{\ln(|y|)}{2}
Simplify.
-\frac{\ln(|y|)}{2}+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.