Evaluate
\frac{\sqrt{42}\ln(\frac{|\sin(x)-\sqrt{42}|}{|\sin(x)+\sqrt{42}|})}{14}+\frac{\sqrt{6}\arctan(\sqrt{6}\cos(x))}{36}+\frac{\sin(x)}{6}-\frac{\cos(x)}{6}+С
Differentiate w.r.t. x
\frac{\cos(x)\left(-84\cos(x)|\sin(x)-\sqrt{42}|\left(\sin(x)\right)^{3}+36\sqrt{42}\sin(x)|\sin(x)-\sqrt{42}|\left(\cos(x)\right)^{2}+1512\sqrt{42}sign(\sin(x)-\sqrt{42})\left(\cos(x)\right)^{2}-6\sqrt{42}sign(\sin(x)-\sqrt{42})\left(\sin(x)\right)^{2}-9\sqrt{42}sign(\sin(x)-\sqrt{42})\left(\sin(2x)\right)^{2}+2016|\sin(x)-\sqrt{42}|\left(\cos(x)\right)^{2}-14|\sin(x)-\sqrt{42}|\left(\sin(x)\right)^{2}-21|\sin(x)-\sqrt{42}|\left(\sin(2x)\right)^{2}+6\sqrt{42}\sin(x)|\sin(x)-\sqrt{42}|+1764\sin(2x)|\sin(x)-\sqrt{42}|+252\sqrt{42}sign(\sin(x)-\sqrt{42})+336|\sin(x)-\sqrt{42}|\right)}{84|\sin(x)-\sqrt{42}|\left(-\left(\sin(x)\right)^{2}+42\right)\left(6\left(\cos(x)\right)^{2}+1\right)}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}