Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\left(\left(\sin(A)\right)^{2}+\left(\frac{\sin(A)}{\cos(A)}\right)^{2}\right)\left(\cos(A)\right)^{2}x
Find the integral of \left(\left(\sin(A)\right)^{2}+\left(\frac{\sin(A)}{\cos(A)}\right)^{2}\right)\left(\cos(A)\right)^{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
\left(\sin(A)\right)^{2}\left(\left(\cos(A)\right)^{2}+1\right)x
Simplify.
\left(\sin(A)\right)^{2}\left(\left(\cos(A)\right)^{2}+1\right)x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.