Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \frac{\frac{x^{2}}{9}+\frac{9\left(-9\right)a^{2}}{9}}{\frac{x}{9}-a}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply -9a^{2} times \frac{9}{9}.
\int \frac{\frac{x^{2}+9\left(-9\right)a^{2}}{9}}{\frac{x}{9}-a}\mathrm{d}x
Since \frac{x^{2}}{9} and \frac{9\left(-9\right)a^{2}}{9} have the same denominator, add them by adding their numerators.
\int \frac{\frac{x^{2}-81a^{2}}{9}}{\frac{x}{9}-a}\mathrm{d}x
Do the multiplications in x^{2}+9\left(-9\right)a^{2}.
\int \frac{\frac{x^{2}-81a^{2}}{9}}{\frac{x}{9}-\frac{9a}{9}}\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{9}{9}.
\int \frac{\frac{x^{2}-81a^{2}}{9}}{\frac{x-9a}{9}}\mathrm{d}x
Since \frac{x}{9} and \frac{9a}{9} have the same denominator, subtract them by subtracting their numerators.
\int \frac{\left(x^{2}-81a^{2}\right)\times 9}{9\left(x-9a\right)}\mathrm{d}x
Divide \frac{x^{2}-81a^{2}}{9} by \frac{x-9a}{9} by multiplying \frac{x^{2}-81a^{2}}{9} by the reciprocal of \frac{x-9a}{9}.
\int \frac{x^{2}-81a^{2}}{x-9a}\mathrm{d}x
Cancel out 9 in both numerator and denominator.
\int \frac{\left(x-9a\right)\left(x+9a\right)}{x-9a}\mathrm{d}x
Factor the expressions that are not already factored in \frac{x^{2}-81a^{2}}{x-9a}.
\int x+9a\mathrm{d}x
Cancel out x-9a in both numerator and denominator.
\int x\mathrm{d}x+\int 9a\mathrm{d}x
Integrate the sum term by term.
\int x\mathrm{d}x+9\int a\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{2}+9\int a\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+9ax
Find the integral of a using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{2}}{2}+9ax+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.